295 research outputs found

    Agent-Based Distributed Resource Allocation in Continuous Dynamic Systems

    Get PDF
    Intelligent agents and multiagent systems reveal new strategies to design highly flexible automation systems. There are first promising industrial applications of multiagent systems for the control of manufacturing, logistics, traffic or multi-robot systems. One reason for the success of most of these applications is their nature as some form of a distributed resource allocation problem which can be addressed very well by multiagent systems. Resource allocation problems solved by agents can be further categorized into static or dynamic problems. In static problems, the allocations do not depend on time and many resource allocation problem of practical interest can be solved using these static considerations, even in discrete-event systems like manufacturing or logistic systems. However, problems especially in highly dynamic environments cannot be addressed by this pure static approach since the allocations, i.e. the decision variables, depend on time and previous states of the considered system. These problems are hardly considered in the relevant agent literature and if, most often only discrete-event systems are considered. This work focuses on agent-based distributed dynamic resource allocation problems especially in continuous production systems or other continuous systems. Based on the current states of the distributed dynamic system, continuous-time allocation trajectories must be computed in real-time. Designing multiagent systems for distributed resource allocation mainly comprises the design of the local capabilities of the single agents and the interaction mechanisms that makes them find the best or at least a feasible allocation without any central control. In this work, the agents are designed as two-level entities: while the low-level functions are responsible for the real-time allocation of the resources in the form of closed-loop feedback control, the high-level functionalities realize the deliberative capabilities such as long-term planning and negotiation of the resource allocations. Herein, the resource allocation problem is considered as a distributed optimization problem under certain constraints. The agents play the role of local optimizers which then have to coordinate their local solutions to an overall consistent solution. It is shown in this contribution that the described approach can be interpreted as a market-based allocation scheme based on balancing of supply and demand of the resources using a virtual price. However, the agents calculate and negotiate complete supply and demand trajectories using model-based predictions which also leads to the calculation of a price trajectory. This novel approach does not only consider the dynamic behaviour of the distributed system but also combines control tasks and resource allocation in a very consistent way. The approach is demonstrated using two practical applications: a heating system and an industrial sugar extraction process

    Towards Persistent Storage and Retrieval of Domain Models using Graph Database Technology

    Full text link
    We employ graph database technology to persistently store and retrieve robot domain models.Comment: Presented at DSLRob 2015 (arXiv:1601.00877

    Safer UAV Piloting: A Robust Sense-and-Avoid Solution for Remotely Piloted Quadrotor UAVs in Complex Environments

    Get PDF
    Current commercial UAVs are to a large extent remotely piloted by amateur human pilots. Due to lack of teleoperation experience or skills, they often drive the UAVs into collision. Therefore, in order to ensure safety of the UAV as well as its surroundings, it is necessary for the UAV to boast the capability of detecting emergency situation and acting on its own when facing imminent threat. However, the majority of UAVs currently available in the market are not equipped with such capability. To fill in the gap, in this paper we present a complete sense-and-avoid solution for assisting unskilled pilots in ensuring a safe flight. Particularly, we propose a novel nonlinear vehicle control system which takes into account of sensor characteristics, an emergency evaluation policy and a novel optimization-based avoidance control strategy. The effectiveness of the proposed approach is demonstrated and validated in simulation with multiple moving objects

    An Extended Flexible Job Shop Scheduling Problem with Parallel Operations

    Get PDF
    Traditional planning and scheduling techniques still hold important roles in modern smart scheduling systems. Realistic features present in modern manufacturing systems need to be incorporated into these techniques. Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. In this paper, we consider the FJSP with parallel operations (EFJSP) and we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the problem. Several FJSP and EFJSP instances were used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA achieved improvements in terms of efficiency and efficacy. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for the considered problem

    Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization

    Get PDF
    Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. The FJSP contains two sub-problems, namely machine assignment problem and operation sequencing problem. In this paper, we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the multi-objective FJSP. Three minimization objectives are considered, the maximum completion time, workload of the critical machine and total workload of all machines. Five well-known instances of FJSP have been used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA have achieved improvements in terms of efficiency. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for solving multi-objective FJSP

    Implementation and validation of an event-based real-time nonlinear model predictive control framework with ROS interface for single and multi-robot systems.

    Get PDF
    This paper presents the implementation and experimental validation of a central control framework. The presented framework addresses the need for a controller, which provides high performance combined with a low-computational load while being on-line adaptable to changes in the control scenario. Examples for such scenarios are cooperative control, task-based control and fault-tolerant control, where the system's topology, dynamics, objectives and constraints are changing. The framework combines a fast Nonlinear Model Predictive Control (NMPC), a communication interface with the Robot Operating System (ROS) as well as a modularization that allows an event-based change of the NMPC scenario. To experimentally validate performance and event-based adaptability of the framework, this paper is using a cooperative control scenario of Unmanned Aerial Vehicles (UAVs)

    Deep Reinforcement Learning based Continuous Control for Multicopter Systems

    Get PDF
    In this paper we apply deep reinforcement learning techniques on a multicopter for learning a stable hovering task in a continuous action state environment. We present a framework based on OpenAI GYM, Gazebo and RotorS MAV simulator, utilized for successfully training different agents to perform various tasks. The deep reinforcement learning method used for the training is model-free, on-policy, actor-critic based algorithm called Trust Region Policy Optimization (TRPO). Two neural networks have been used as a nonlinear function approximators. Our experiments showed that such learning approach achieves successful results, and facilitates the process of controller design

    Faster Optimization in S-Graphs Exploiting Hierarchy

    Full text link
    3D scene graphs hierarchically represent the environment appropriately organizing different environmental entities in various layers. Our previous work on situational graphs extends the concept of 3D scene graph to SLAM by tightly coupling the robot poses with the scene graph entities, achieving state-of-the-art results. Though, one of the limitations of S-Graphs is scalability in really large environments due to the increased graph size over time, increasing the computational complexity. To overcome this limitation in this work we present an initial research of an improved version of S-Graphs exploiting the hierarchy to reduce the graph size by marginalizing redundant robot poses and their connections to the observations of the same structural entities. Firstly, we propose the generation and optimization of room-local graphs encompassing all graph entities within a room-like structure. These room-local graphs are used to compress the S-Graphs marginalizing the redundant robot keyframes within the given room. We then perform windowed local optimization of the compressed graph at regular time-distance intervals. A global optimization of the compressed graph is performed every time a loop closure is detected. We show similar accuracy compared to the baseline while showing a 39.81% reduction in the computation time with respect to the baseline.Comment: 4 pages, 3 figures, IROS 2023 Workshop Pape

    Small Satellite Reliability: A Decade in Review

    Get PDF
    Advances in the small satellite combined with the availability of low-cost launches have led to an increasing number of space missions. As space is more accessible than ever before, new and innovative missions arise. A broad understanding of reliability trends on satellites can guide these future missions towards success. As a result, more and more space industries are focusing on reliability in the early stages of the design. The goal of this paper is to investigate the reliability of small satellites launched over the last three decades. Satellites launched between January 1990 - December 2019 and weighing between 40kg - 500kg are considered for this study. The dataset consists of 866 Earth-orbiting satellites. This study utilizes Kaplan-Meier estimator for calculating non-parametric reliability functions. The reliability results are then used to fit parametric models such as Weibull distribution to identify reliability trends. The dataset is further categorized based on satellite mission, launch year, developer, design life and orbit inclination to analyze their specific reliability trends. Finally, the contribution of satellite subsystems to satellite failure is quantified for this dataset and the subsystems with high(er) propensity for failure are identified. The results obtained in this study shall help in reliability/redundancy allocation of small satellites and its subsystems. It also supports small satellite design decisions, testing strategies and developing reliability growth plans for future missions. Furthermore, understanding the reliability trends in the past decades could potentially improve the reliability of small satellite in this current decade

    S-Nav: Semantic-Geometric Planning for Mobile Robots

    Full text link
    Path planning is a basic capability of autonomous mobile robots. Former approaches in path planning exploit only the given geometric information from the environment without leveraging the inherent semantics within the environment. The recently presented S-Graphs constructs 3D situational graphs incorporating geometric, semantic, and relational aspects between the elements to improve the overall scene understanding and the localization of the robot. But these works do not exploit the underlying semantic graphs for improving the path planning for mobile robots. To that aim, in this paper, we present S-Nav a novel semantic-geometric path planner for mobile robots. It leverages S-Graphs to enable fast and robust hierarchical high-level planning in complex indoor environments. The hierarchical architecture of S-Nav adds a novel semantic search on top of a traditional geometric planner as well as precise map reconstruction from S-Graphs to improve planning speed, robustness, and path quality. We demonstrate improved results of S-Nav in a synthetic environment.Comment: 6 pages, 4 figure
    • …
    corecore